RESEARCH ARTICLE

Managerial Theory and AT Math

Paul T E Cusack ¹, Saint John²

Abstract

This brief paper provides some fundamental mathematics related to Managerial Theory. We use AT Math to solve the problem of teambuilding. The golden mean parabola plays a paramount role in summing the various observers perspectives so that one goal is had by the team set to accomplish a goal.

Keywords: Nongovernmental organizations, upper middle income, funding, Botswana.

Author Affiliation: ¹Department of , BScE, DULE 23 Park Ave.

²NB E2J 1R2 Canada

Corresponding Author: Paul T E Cusack, BScE, DULE 23 Park Ave.

Email: St-michael@hotmail.com

How to cite this article: Paul T E Cusack, Managerial Theory and AT Math, Journal of Management and Science, 10(4) 2020 47-48. Retrieved from https://jmseleyon.com/index.php/jms/article/view/449

Source of support: Nil

Conflict of interest: None.

Received: 6 December 2020 Revised: 10 December 2020 Accepted: 11 December 2020

1.INTRODUCTION

In this paper, we will consider AT Math as applied to Managerial Theory. Management involves having a team of people working toward a common goal.[1] The main thing to achieve this end is to have al the team members agree on the objective goal. In his paper, we model object and team member (s1; s2;s3;s4....etc.) as viewing a common object by the geometry teach member has. Each member's observation comes from a different perspective. In our model, this is a different geometric angle of approach. If we sum these observations, we get a function that describes the individual vantage points as well as a general function of the observed. That angle is theta. And the function is the golden mean parabola.

We've seen in previous papers by this author that the human mind as a black box has the golden mean parabola as the function that governs the individual mind.

Figure 2 The mind as a black box

Figure 1 Observers and the Object

Now we will use AT Math to show how the golden mean

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

parabola applies. y'=y Integrate	2.Space; Energy; Time Management is the expenditure of energy in space and time.We use the equations from AT Math, to put management on a solid physical footing.
y=∫y dθ	s=E x t= E t sin θ t=Et sin θ
y=n n=nθ	E=1/sin θ
y=y'	E=0.0177083=1/sin θ
θ ⁽ⁿ⁻¹⁾ /(n-1)=n	θ =34.38°=0.60000 rads s=E x t=(1/sin A) t sin A
θ ⁽ⁿ⁻¹⁾ =n (n-1)	$s' = [-\cos \theta \cdot \sin \theta] - 2 \cdot t/dt \cdot \cos \theta$
Let n=1	=[-cos (0.6) •sin (0.6)]-2 •1•cos (0.6)
1=n ² -n	=[-cos (34.377) • sin (34.377)]-2 • cos (34.377)
n²-n-1=0	=0.38004
Golden Mean Parabola	d=v/t=s=v/t=-0.38004/t
dθ/dt=dt/dt=1	s=t
sin 1=0.8414	s ² =v
$(1-\sin 1)=0.1585^{-1}/2\pi$ TE=M[1/2 π] TE=M[1 sin 1]	s=√v=√(-1)√(0.3800) =-0.618(0.61644) =38.09=v
y=y' E=E'=E'	s=v s=s'=constant=e^-t 0 <t<1 e="In" t="M</td" where=""></t<1>
E=G	y=y' The function equals the derivative.
G /[1-sin1]=M	3.Conclusion
M=4206	We see that AT Math is a powerful tool to help us understand managerial theory.
tan 1=0.4206/t	References
t=2.700 =c ³	1. P. T. E. Cusack, The General AT Math Solution, (2012).
t=c/M	
$M=c/t=(d/t)/t=s/t^{2}$	
s=Mt ²	
s'=dM/dt (2t) =4t	

Journal of Management and Science 10(4) (2020) 47-48

s'=4(2.7)²=29.16=1/3429=1/0.598~0.6

=4(2.7) =1.08

48