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ABSTRACT: Statistical Process Control (SPC) uses statistical techniques to improve the quality of 

a process reducing its variability. The main tools of SPC are the control charts. The basic idea of 

control charts is to test the hypothesis that there are only common causes of variability versus the 

alternative that there are special causes. Control charts are designed and evaluated under the 

assumption that the observations from the process are independent and identically distributed (IID) 

normal. However, the independence assumption is often violated in practice. Autocorrelation may be 

present in many procedures, and may have a significant effect on the properties of the control charts. 

Thus, traditional SPC charts are inappropriate for monitoring process quality. In this study, we 

present methods for process control that deal with auto correlated data and a method based on time 

series ARIMA models (Box Jenkins Methodology). We apply the typical Cumulative Sum 

(CUSUM) and Exponentially Weighted Moving Average (EWMA) charts as SPC techniques and the 

time-series method in determining packaging process quality. 

Keywords: Statistical Process Control; Control charts; Autocorrelation; Time Series; CUSUM; 

EWMA. 
 
 

1. INTRODUCTION 

Statistical process control (SPC) refers to the collection of statistical procedures and problem solving 

tools used to control and monitor the quality of the output of some production process through the 

reduction of variance, Montgomery (2005). Statistical Process control is widely used in all aspects of 

business be it in the manufacturing and non-manufacturing industry. It is concerned with quality of 

conformance. Due to modern technology, systems or machinery are well designed but in any process 

no matter how well the system is designed, there exists a certain amount of variability in the output 

produced by the system. Miller (2003), states that all processes are subject to degrees of variation, 

and this process variability is due to assignable causes and non assignable causes. Non assignable or 

common causes are natural and are inherent in every process and somehow cannot be avoided. 

Assignable causes or special causes are identifiable and correctable and these include equipment out 

of adjustment, defective materials, changes in parts or materials, broken machinery or equipment, 

operator fatigue or poor work methods, or errors due to lack of training. If there is excess variation 

due to assignable causes the output product may malfunction or may not serve its intended use. 

Assignable causes if identified can be eliminated using Statistical Process control tools. Control 

charts have been widely used since 1920s since their discovery by Walter A. Shewhart because they 

have proven to be an efficient tool in dealing with process variations in SPC. A control chart is a 

statistical diagnostic tool used to distinguish between variation in a process resulting from common 

causes and variation resulting from special causes, Montgomery (2009). A process is said to be in a 

state of statistical control or simply in control if it is free from the influence of special causes. 

Otherwise, it is said to be out of control. In statistical terms, this means an in-control process variable 

has a constant distribution. In applications, however, it is generally considered sufficient for the 

process parameters such as the mean, and the standard deviation, to remain constant. 

 

2. BACKGROUND AND LITERATURE 

The ultimate goal of every business entity is to make profit, in order to maximize profitability while 

complying with government regulations regarding net package contents, food manufacturers and 
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suppliers or packagers must ensure that they adhere to stated regulations. In Zimbabwe, the 

Standards Association of Zimbabwe (SAZ) is responsible for setting standards for evaluating net 

package contents of packaged goods for example foodstuffs and beverages. The standards include 

two basic requirements. The first one applies to the average net quantity of contents in each lot and 

the second one applies to each individual package. The average net content of packages in a lot must 

at least be equal to the label declared on the container. Any individual package net content must not 

be less or more than the label declared net content by an amount that exceeds the maximum 

allowable variation. The maximum allowable variation depends on the label content. Overfilling 

during packaging is inefficient and has a negative impact on profitability to a greater extent and also 

under filling results in significant risks of violating net contents regulations leading to potential 

penalties from government, loss of business reputation and impaired customer relations. 

Many businesses use Univariate Statistical Process Control (USPC) in both their manufacturing and 

service operations, Montgomery (2009). USPC has been found to be particularly suited for many of 

the problems found in both manufacturing and non manufacturing industry. It provides a diagnostic 

tool for the comprehensive on-line statistical monitoring of a process and the on-line detection and 

diagnosis of process malfunctions and it is applicable when dealing with a single characteristic of a 

product at a time. Statistical techniques for process control, process improvement and sampling 

inspection trace their origins back to the early 1920’s. Walter A. Shewhart introduced the concept of 

the control chart, whilst seven years in later 1931, the initial theory of statistical quality control was 

developed (Shewhart, 1931). 

The American government realizing that they needed to increase efficiency and quality in the 

industrial sector especially in the manufacture of weapons, they applied SPC by the help of Edwards 

Deming during World War II. Deming was instrumental in applying SPC to wartime production to 

reduce variation in production processes. In 1951 Deming became part of the Japanese Union of 

Scientists and Engineers (JUSE) because of his excellent skills in the continuous improvement of 

processes and quality through the use of SPC techniques. In this regard, Japanese manufacturers 

achieved the highest standards of production efficiency in the history of manufacturing (Mann, 

2010). 

According to Deming (2000), the late 1950s saw the application of Statistical Process control in the 

field of automotives. Toyota Motor Corporation had problems that affected their production systems 

for example motor vehicle parts could not fit precisely after manufacturing, waste of material and so 

many production inconsistencies, so the company applied SPC to identify and iron out production 

inefficiencies. Toyota Production System focused on ironing out these problems by identifying the 

sources of variation in production systems using control charts to objectively identify process 

inefficiencies. By the end of the 1970s, Toyota’s production of vehicles had increased from 154,770 

in 1960 to 3,293,344 in 1980 with unsurpassed efficiency Deming (2000). In 1988, the Software 

Engineering institute in America suggested that SPC could be applied to non manufacturing 

processes such as software engineering processes. This marked the application of SPC in non 

manufacturing processes. Since then there has been tremendous applications of SPC in various fields 

although not much has been documented on its applications but it still has made a lot of impact in the 

improvement of processes and quality. 

Woodall and Faltin (1993) presented an overview and perspective on control charting. Grigg et al. 

(1998) presented a case study of Statistical Process Control in fish product packaging. This study 

highlighted the role of statistical process control in packaging control of fish. (Weller (2000) 

discussed some practical applications of Statistical Process Control. Srikaeo and Hourigan (2002) 

discussed the use Statistical Process Control to enhance the validation of critical control points 

(CCPs) in shell egg washing. Mohammed (2004) adopted Statistical Process Control to improve the 

quality of health care. Mohammed et al. (2008) illustrated the selection and construction of four 

commonly used control charts (xmr-chart, p-chart, u-chart, c-chart) using examples from healthcare. 
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On packaging control Djeckic et al. (2014) applied SPC to analyze the food packaging process in 

seven food companies in Serbia. 

 

2.1 Cumulative Sum (CUSUM) Chart 

The Cumulative Sum (CUSUM) control chart is an alternative to the Shewhart type chart, which can 

be used as an ordinary control chart except that it has more advantages than the ordinary Shewhart 

control chart. It was first introduced by Page in 1954 and has been widely studied by a number of 

authors over the past years. CUSUM charts are generally used to detect small process shifts. A 

CUSUM chart uses all the information in a sequence of values of a statistic by plotting the 

cumulative sums of their deviations from a target value. Crosier (1986) defined a two sided CUSUM 

method that requires only one cumulative sum for monitoring lower and upper shifts. The main 

advantage of Crosier CUSUM is the possible generalization to multivariate CUSUM scheme useful 

in case of multi variable processes. 

Yaschin (1987) recommended that the CUSUM should be preferred over the Exponentially 

Weighted Moving Average (EWMA) chart. He proved that the possibility of a EWMA statistic being 

in a disadvantageous position is serious than a two sided CUSUM, which use resets and do not have 

a significant inertia problem. Gan (1991) discussed the importance and use of Cusum control charts 

and came to the conclusion that Cusum control charts were the best SPC technique in the 

identification of out of control signals and detecting small shifts in process parameters. The design of 

the conventional CUSUM chart involves evaluation of the control chart performance based on 

average run length (ARL). The conventional CUSUM chart is designed to minimize the out-of- 

control ARL for a mean shift while maintaining a given in-control ARL (Bagshaw and Johnson 

(1975), Moustakides (1986)). 

Arnold et al. (2001) studied the properties of CUSUM control charts with variable sample size and 

sampling intervals. The ability to detect all but very large process shifts is improved by using either 

the VSS or VSI feature in a CUSUM control chart. Ling Yang et al. (2010) developed a novel 

CUSUM - control chart for monitoring the process sample mean with outliers. In their study they 

compared the Novel CUSUM - control chart method to several mean control charts, CUSUM median 

control chart, EWMA median control charts with various shifts of the process sample mean. 

 

2.2 Exponentially Weighted Moving Average (EWMA) Chart 

An alternative to the Shewhart-type control chart, especially when one wants to detect small and 

moderately-sized sustained process shifts, is the Exponentially Weighted Moving Average (EWMA) 

control chart. The Exponentially Weighted Moving Average (EWMA) control chart is a well known 

tool for process monitoring. The EWMA chart was introduced by Roberts (1959) and it is used to 

detect persistent shifts in a process. The main advantage of this chart is that it is able to detect 

quickly small and moderate shifts. They are however slower in detecting large process shifts in the 

process mean and typical run tests cannot be used due to the inherent dependence of data points. The 

application of the EWMA control chart is suggested for processes where repeated sampling is not 

possible or appropriate Warthon and Ringer (1971). 
 

According to Hunter (1986), the EWMA chart performs like the Shewhart Control chart as the 

weighing factor becomes closer to one and it performs like a CUSUM control chart as the weighing 

factor becomes closer to zero. This type of chart provides a forecast of where the process will be in 

the next instance of time and thus provides a mechanism for dynamic process control (Hunter 1986). 

Lucas and Saccuci (1990) evaluate the run length properties of EWMA control schemes by 

representing the EWMA statistic as a continuous -state Markov chain. Gan (1990) proposes three 

modified EWMA charts for Poisson data. Domangue and Patch (1991) proposed another type of 

control chart called the Omnibus EWMA chart which is based on the exponentiation of the absolute 

value of the standardized sample mean of the observation. Omnibus EWMA chart were said to 
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perform better in detecting the shifts in process variance than the shift in the process mean. The 

EWMA chart is used extensively in time series modeling and forecasting for processes with gradual 

drift, (Box, Jenkins, and Reinsel, 1994). EWMA charts have also been used to detect shifts in the 

number of nonconforming items. 

 

2.3 Autocorrelation of Observed Values and ARIMA 

The standard assumptions in SPC are that the observed process values are normally, independently 

and identically distributed (IID) with fixed mean 𝜇 and standard deviation 𝜎 when the process is in 

control. Observed data may not be normally distributed and independent as expected and when these 

assumptions are violated, data is more likely to be auto correlated. The presence of autocorrelation 

significantly reduces the control chart performance. It was shown that autocorrelation deteriorates  

the ability of the Shewhart chart to correctly separate the assignable causes from the common causes 

(Alwan, 1992). Montgomery (2005) argues that this is a common consequence of processes that are 

driven by inertia forces in process industries and frequent sampling in the process industries. The 

presence of autocorrelation has got the effect of increasing false alarm signals in control charts 

(Harris and Ross 1991). 

Two methods have been advocated for dealing with the autocorrelation of observed values in 

Statistical Process Control. The first approach uses standard control charts on original observations, 

but adjusts the control limits and the methods of estimating parameters to account for the 

autocorrelation in the observations (VanBrackle and Reynolds, 1997; Lu and Reynolds, 1999). This 

approach is particularly applicable when the level of autocorrelation is low. A second approach for 

dealing with autocorrelation is to fit a time series model such as ARIMA models to the process 

observations. The procedure forecasts observations from previous values and then computes the 

forecast errors or residuals. Montgomery (1997) recommended three approaches for monitoring auto 

correlated observations. (i) Fit an ARIMA model to data then apply traditional control charts such as 

CUSUM and EWMA to monitor residuals. (ii) Monitor the auto correlated observations by 

modifying the standard control limits to account for the autocorrelation. (iii) Eliminate the 

autocorrelation by using an engineering controller. 

In 1997, Kramer and Schmid (1997) discussed the application of the Shewhart chart to residuals of 

𝐴𝑅(1) process and in the same year Reynolds and Lu (1997) compared performances of two 

different types of EWMA control charts for residuals of 𝐴𝑅(1) process. Yang and Makis (1997) 

compared the performances of CUSUM and EWMA charts for the residuals of 𝐴𝑅(1) process. 

Zhang (1997) remarked that the detection capability of an 𝑋 bar residual chart was poor for small 

mean shifts compared to the traditional 𝑋 bar chart, EWMA and CUSUM charts for 𝐴𝑅(2) process. 

Two years later, Lu and Reynolds (1999) compared the performances of EWMA control chart based 

on the residuals from the forecast values of 𝐴𝑅(1) process and EWMA control chart based on the 

original observations. 

Jiang et al. (2002) proposed proportional integral derivative (PID) charts for residuals of ARMA(1,1) 

process. Snoussi et al. (2005) studied on residuals for short run auto correlated data of auto correlated 

process. They compared the performances of Shewhart, CUSUM and EWMA control charts for 

residuals of 𝐴𝑅(1) process. Although the residual charts have some advantages by using them for 

auto correlated processes, there are some problems due to the detection capability of the residual 

chart. Harris and Ross (1991) recognized that the CUSUM control chart and EWMA control chart 

for the residuals from a first-order autoregressive process may have poor capability to detect the 

process mean shift. Wardell et al. (1994) showed that Shewhart charts are not completely robust to 

deviations from the assumption of process randomness; namely when observations are correlated. 
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3. METHODOLOGY 

 

3.1 ARIMA (𝒑, 𝒒) Processes 

The Autoregressive integrated moving average (ARIMA) time series models were used to remove 

autocorrelations to ensure process data is stationary and come up with the best model that gives 

process residuals. The Autoregressive integrated moving average ARIMA model is given by: 

𝑋𝑡 = 
∅1𝑋𝑡−1 + ∅2𝑋𝑡−2 + ⋯ + ∅𝑝 𝑋𝑡−𝑝  + 𝑎𝑡  + 𝜃1 𝑎𝑡−1 + 𝜃2 𝑎𝑡−2   + ⋯ + 𝜃𝑞 𝑎𝑡−𝑞 (1) 

A process 𝑋𝑡 is said to be stationary if for every 𝑡, 

 
 

Where: 𝑎𝑡 ~𝑁𝐼𝐷(0, 𝜎2) 

𝑋𝑡 − ∅1𝑋𝑡−1 − ∅2𝑋𝑡−2 − ⋯ − ∅𝑝 𝑋𝑡−𝑝 = 

𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯ − 𝜃𝑞 𝑎𝑡−𝑞 (2) 

We plotted both the autocorrelation function (ACF) and the partial autocorrelation function (PACF) 

to identify the best ARIMA model capable of producing the IID residuals. ACF is given by: 
𝐶𝑜𝑣(𝑋𝑘 , 𝑋𝑡−𝑘 ) 𝛾𝑘 

𝜌𝑘 = 
 𝑉𝑎𝑟 𝑋𝑘  . 𝑉𝑎𝑟(𝑋𝑡−𝑘 

= 
) 𝛾0 

(3) 

And PACF is given by: 
1 𝑁−𝑘 𝑋 

 
− 𝑋 (𝑋 

 
− 𝑋 ) 

𝑟𝑘 = 𝑁 
𝑡=1 𝑡 

1 
𝑡+1 

(4) 

 
3.2 I-MR Charts 

𝑁 (𝑋0 − 𝑋) 

The individuals and moving range (I-MR) chart is one of the most commonly used control charts for 

continuous data; it is applicable when one data point is collected at each point in time. The control 

limits are constructed by using the moving range of two successive observations as follows: 

𝑈𝐶𝐿  = 𝑋 + 3
 𝑀 𝑅 

 
𝑑2 

 

𝐿𝐶𝐿  = 𝑋 − 3
 𝑀 𝑅 

 
𝑑2 

 
 

𝐶𝐿 = 𝑋  

(5) 
 

 
(6) 

3.3 Cumulative Sum (CUSUM) Chart 

Cumulative Sum (CUSUM) control charts show cumulative sums of subgroup or individual 

measurements from a target value. CUSUM charts can help to decide whether a process is in a state 

of statistical control by detecting small, sustained shifts in the process mean. To design the CUSUM 

control chart, estimates for the process standard deviation were computed, these were obtained from 

the I-MR charts. The CUSUM chart tracks the distance between the actual data point and the grand 

mean. Then, by keeping a cumulative sum of these distances, a change in the process mean can be 

determined, as this sum will continue getting larger or smaller. These cumulative sum statistics are 

called the upper cumulative Sum, 
𝐶+ = max⁡[0, 𝑥𝑡 −  𝜇0 + 𝑘  + 𝐶+ (7) 

𝑡 

And the lower cumulative sum, 
𝑡−1 

𝐶− = max⁡[0,  𝜇0 − 𝑘  − 𝑥𝑡 + 𝐶+ (8) 
𝑡 𝑡−1 

Where 𝑥𝑡 is the 𝑖𝑡ℎ observation of the process, 𝑘 is the slack value or (reference value) which is often 

chosen about halfway between the target mean 𝜇0 and the out-of-control values of the mean say 𝜇1 
for the upper CUSUM mean and 𝜇2 for the lower CUSUM mean. The critical size of the shift is 

determined by the following: 

𝜇1  = 𝜇0 + 𝛿1𝜎, (9) 
𝜇2  = 𝜇0 + 𝛿2𝜎 (10) 
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Where 𝜇0 is the mean or target value, 𝜇1 is the upper shift mean, 𝜇2 is the lower shift mean, 𝛿1 is the 

upper critical shift, 𝛿2 is the lower critical shift and _ is the standard deviation of the process. The 

reference value 𝐾 is half the magnitude of the shift, thus a value half way between the target 𝜇0 and 

the upper CUSUM mean 𝜇1, or the lower CUSUM mean 𝜇2. The reference value is a line, which if 

crossed, provides an early warning of a shift in the process mean. The upper and lower reference 

values 𝐾1 and 𝐾2 are calculated as follows: 

𝐾1 = 
 

𝐾2 = 

|𝜇1 − 𝜇0| 
= 

2 
|𝜇2 − 𝜇0| 

= 
2 

𝛿1𝜎 
(11) 

2 
𝛿2𝜎 

(12) 
2 

The decision variable 𝐻, which acts as a control limits, must be created to determine the state of the 

process. The upper and lower decision variables 𝐻1 and 𝐻2 are calculated as follows: 

𝐻1 = ℎ1𝜎 (13) 
𝐻2 = ℎ2𝜎 (14) 

Where ℎ1 and ℎ2 must be determined through the ARL approximated by the equation: 
𝑒−2∆𝑏 + 2∆𝑏 − 1 

𝐴𝑅𝐿 = 
2∆2 (15) 

for ∆≠ 0, where ∆= 𝛿∗ − 𝑘   for 𝐶+  and ∆= −𝛿∗ − 𝑘   for 𝐶−,  𝑏   =  ℎ + 1.166 and 𝑏 = 
|𝜇 1 −𝜇0 |

. 
𝑡 𝑡 𝜎 

If ∆= 0, one can use 𝐴𝑅𝐿 = 𝑏2The quantity 𝛿∗ represents the shift in the mean in the units of 𝜎, for 

which the ARL is to be calculated. A two sided CUSUM is given by: 

𝐴𝑅𝐿 =   
1 

𝐴𝑅𝐿+ 

1 −1 

+   
𝐴𝑅𝐿− 

(16) 

3.4 Exponentially Weighted Moving Average (EWMA) Chart 

Like the CUSUM chart, EWMA is suitable for detecting small process shifts. The EWMA is a 

statistic for monitoring the process that averages the data in a way that gives less and less weight to 

data as they are further removed in time. By the choice of weighting factor 𝜆, the EWMA control 

procedure can be made sensitive to a small or gradual drift in the process. The EWMA statistic is 

defined as: 

𝑧𝑡  = 𝜆𝑥𝑡 +   1 − 𝜆 𝑧𝑡−1 (17) 
with  0 ≤ 𝜆 ≤ 0, 𝑧0 = 𝜇0, where 𝑧𝑡 is the moving average at time t. If the observations 𝑥𝑡 are 

independent random variables with variance 𝜎2, then the variance of 𝑧𝑡 will be: 

𝜎2 = 𝜎2 
𝜆
    1 − (1 − 𝜆)2𝑡 (18) 

𝑧𝑡 
 

2 − 𝜆 
The control limits for EWMA Control Chart are: 

𝜆 
𝑈𝐶𝐿 = 𝜇0 + 𝐿𝜎    

2 − 𝜆 
   1 −   1 − 𝜆 2𝑡 (19) 

𝐶𝐿 = 𝜇0 (20) 
𝜆 

𝑈𝐶𝐿 = 𝜇0 − 𝐿𝜎    
2 − 𝜆 

   1 −   1 − 𝜆 2𝑡 (21) 

3.5 ARL of EWMA Chart 

There are two main approaches for computing ARL for an EWMA sequence. The first approach is 

based on the fact that ARL must satisfy the Fredholm integral equation. The second approach is 

based on the flexible and relatively easy to use Markov chain approach, originally proposed by 

Brook and Evans in 1972. In this study we used the second approach to calculate the ARL of the 

EWMA control chart. This procedure involves dividing the interval between LCL and UCL into 
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𝑝 = 2𝑚 + 1 subintervals of width 2𝛿, where 𝛿 =
 𝑈𝐶𝐿−𝐿𝐶𝐿

. When the number of subintervals 𝑝 is 
2𝑝 

sufficiently large the finite approach provides an effective method that allows ARL to be effectively 

evaluated. 

4. DATA ANALYSIS AND DISCUSSION 
 

Fig 1: Time Series Plot of net weight 

Figure 1 shows a time series plot of net weight of contents of Super Saver beans. An Augmented 

Dickey-Fuller (ADF) test was also applied to test for the presence of a unit root in the time series. 

The ADF test on the original data provided evidence of the absence of a unit root in the data meaning 

to say that the data is stationary. 

Fig 2: Residual Plots obtained from ARIMA (2, 0, 1) Model 

Referring to figure 2; the individual charts of residuals indicate that the residuals have constant 

location and scale. All Data points are in control. Plot of residuals against fitted values are shapeless 

and therefore the randomness assumption holds. The histogram of residuals is approximately normal 

indicating that the residuals are normally distributed. From the 4 plot above it can be safely 

concluded that these residuals are adequate to be monitored for process quality by control charting 

techniques. 
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Fig 3: I-MR Chart for residuals 

The I-MR chart in figure 3 shows that the process is not stable, the individuals chart show that all the 

data points are in control and The Moving range chart displays five disturbances in the process and 

these out of control signals are shown at 113,158,159,166 and 200.Therefore the process requires 

further investigation. From the I-MR charts we can estimate the standard deviations for the 

packaging process and use them to chart CUSUM charts. 

Fig 4: CUSUM Chart for residuals 

Figure 4 shows the CUSUM chart for packaging process data using h and k values as determined 

using Anygeth.exe. The values obtained are ℎ = 4.4688, 𝑘 = 0.594, 𝜎 = 0.789, 𝑎𝑛𝑑 𝛥 = 0.5. For  

the CUSUM chart, the in-control ARL was set to 14 days. As such, one would expect to see about 

one false alarm every 14 days. This says that when a process is in control one expects an out-of- 

control signal (false alarm) each 14 runs. That is, the scheme will give a false alarm with probability 

of 1/14. The CUSUM chart generated produced out of control signals at: 

19,20,21,23,31,36,70,71,94,95,96,97,98,119,123,125,138,140,141,155,156,161,199. 

The EWMA chart was used as a control chart technique to determine whether the packaging process 

was in control or not. Figure 5 shows the EWMA control chart based on the parameter 𝜆 = 0.2. The 

EWMA chart detects out of control signals at 19,20,31,94,95,96,97. Therefore, the process is not in 

control. 
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Fig 5: EWMA Chart of residuals 

Fig 6: Revised EWMA Chart 

 

Fig 7: Revised CUSUM Chart 

Fig 6 and fig 7 show the revised EWMA and CUSUM charts respectively after the elimination of all 

out – of – control signals. That is removing all packaging with the corresponding out – of – control 

points indicated above (fig 4 and fig 5). 

 

5. CONCLUSION 

As in the many modern applications of statistical process control charts, the autocorrelation has an 

important effect on data and it should be considered. When the data are auto correlated the wrong 

decisions can be made about uncontrolled number of process variables. If there is any autocorrelation 

between the consecutive observations, it should be taken into account during the process. Both the 

CUSUM and the EWMA control chart techniques were very capable of detecting small mean shifts 

in the packaging process data when correctly set up to analyze the data. The instability of the process 
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is believed to be attributed to the fact that employees in the packaging department are not as skilled 

as they are expected to be in their job area. It is also believed that during the packaging process, the 

packagers do not pay particular attention to the measurement scale indicated by huge deviations from 

the process mean. The Average Run length of 14 days suggests that the process is bound to fail every 

14 days. 
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