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ABSTRACT 

A Receiver Operating Characteristic (ROC) curve provides quick access to the quality of 

classification in many medical diagnoses. The Weibull distribution has been observed as one 

of the most useful distributions, for modeling and analyzing lifetime data in Engineering, 

Biology, Survival and other fields. Studies have been done vigorously in the literature to 

determine the best method in estimating its parameters. In this paper, we examine the 

performance of Bayesian Estimator using Jeffreys‘ Prior Information and Extension of 

Jeffreys‘ Prior Information with three Loss functions, namely, the Linear Exponential Loss, 

General Entropy Loss, and Square Error Loss for estimating the AUC values for Constant 

Shape Bi-Weibull failure time distribution. Theoretical results are validated by simulation 

studies. Simulations indicated that estimate of AUC values were good even for relatively 

small sample sizes (n=25). When AUC≤0.6, which indicated a marked overlap between the 

outcomes in diseased and non-diseased populations. An illustrative example is also provided 

to explain the concepts. 

 

Key words: AUC, Biomarker, Constant Shape Bi-Weibull ROC model, Bayesian Method, 

Jeffreys‘ Prior Information, Extension of Jeffreys‘ Prior Information.  
 

1. INTRODUCTION 

 

Receiver operating characteristic (ROC) curves are widely used for the evaluation of 

continuous or ordinal diagnostic tests and biomarkers [4, 6, 20]. The ROC Curve is 

embedded by the two intrinsic measures Sensitivity (Sn) or True Positive Rate (TPR) and 1- 

Specificity (Sp) or False Positive Rate (FPR) along with its accuracy measure AUC. The 

corresponding AUC provides a global summary statistic indicating the overall discriminatory 

ability of a test independent of any cut-off point, and may be used to compare the 

performance of different tests for detection of the condition of interest. 

 

The AUC is defined as the total Area under the ROC curve (AUC) represented by 

―sensitivity‖ versus ―1-specificity‖ corresponding to all possible cut-off points. The AUC can 

be interpreted as the average sensitivity, across all possible False-Positive Fractions [26]. An 

alternative interpretation is the proportion of the time that test scores for individuals with the 

condition of interest will exceed (or be less than) those of individuals without the condition. 

 

The term ROC analysis was coined during II world war to analyze the radar signals [19]. The 

application of ROC Curve technique was promoted in diversified fields such as experimental 
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psychology [7], industrial quality control [3] and military monitoring [24]. [7] Was first to 

use the Gaussian model for estimating the ROC Curve. The importance of ROC Curve in 

 

medicine was due to [16] analyze the radiographic images. [9] Explained the importance and 

robustness of Binormal ROC Curve. Recently [21] was explain the Bayesian estimation of 

the receiver operating characteristic curve for a diagnostic test with a limit of detection in the 

absence of a gold standard. 

 

We also developed Functional Relationship between Brier Score and Area Under the 

Constant Shape Bi-Weibull ROC Curve [15], Confidence Intervals Estimation for ROC 

Curve, AUC and Brier Score under the Constant Shape Bi-Weibull Distribution [12], 

Asymmetric and Symmetric Properties of Constant Shape Bi-Weibull ROC Curve Described 

by Kullback-Leibler Divergences [13], and Bayesian Estimation of Parameters under the 

Constant Shape Bi-Weibull Distribution Using Extension of Jeffreys‘ Prior Information with 

Three Loss Functions [14]. 

 

The main purpose of this paper is to compare the Estimation of the AUC of the Constant 

Shape Bi-Weibull distribution with its Bayesian counterpart using Extension of Jeffreys‘ 

Prior Information and Jeffreys‘ Prior Information obtained from Lindley‘s approximation 

procedure based on three Loss Functions. 

 

In this paper, the Bayesian Estimation of AUC under the Constant Shape Bi-Weibull 

Distribution is studied by Using Extension of Jeffreys‘ Prior Information and Jeffreys‘ Prior 

Information with Three Loss Functions. This paper is organized as follows: In Section 2, 

estimation of AUC under Jeffreys‘ Prior Information and Extension of Jeffreys‘ Prior 

Information with Three Loss functions is discussed. Section 3, provides simulation study for 

proposed theory. Section 4 deals with validation of the proposed theory based on real time 

data. Conclusions are given in Section 5. 

 

2. A CONSTANT SHAPE BI-WEIBULL ROC MODEL AND ITS AUC 

 

In medical science, a diagnostic test result called a biomarker [10, 1] is an indicator for 

disease status of patients. The accuracy of a medical diagnostic test is typically evaluated by 

sensitivity and specificity. Receiver Operating Characteristic (ROC) curve is a graphical 

representation of the relationship between sensitivity and specificity. Hence the main issue in 

assessing the accuracy of a diagnostic test is to estimate the ROC curve. 

 

Suppose that there are two groups of study subjects: diseased and nondiseased. Let S be a 

continuous biomarker. Assume that ROC analysis based on the True Positive Probability 

(TPP),  |  ,  and  False  Positive  Probability  (FPP),   |   ,  in  fundamental  detection   
problems with only two events and two responses [25,7,2]. 

 

According to Signal Detection Theory(SDT), we assume that there are two probability 

distributions of the random variables X and Y, one associated with the signal event s and 

other with the non signal event n[11]; these probability (or density) distributions of a given 

observation x and y are conditional upon the occurrence of s and n [2]. 
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In the medical context, the signal event corresponds to the diseased group, and the nonsignal 

event to the nondiseased group [8]. If the cutoff value is c, corresponding to a particular 

likelihood ratio, the TPP and FPP are given by the following expressions [2]: 

 

Let x, y be the test scores observed from two populations with (diseased individuals) and 

without (nondiseased individuals) condition respectively which follow Constant Shape Bi- 

Weibull distributions. The density functions of Constant Shape Bi-Weibull distributions are 

as follows, 
 

 
   |     

and 

 *
 
+ 
   

 

 
   

 
  * + 

   |     

 

The probabilistic definitions of the measures of ROC Curve are as follows: 
 

  

                     |          ∫      |      
 

 

                         |          ∫      |      

  

 

In this context, the (1-Specificity) and Sensitivity can be defined using equations (1) and (2) 

and are given in equations (3) and (4) respectively, 

 
 *

 
+ 

   |              
 

and 
 

   |              

 
 *

 
+ 
           

 

The ROC Curve is defined as a function of (1-Specificity) with scale parameters of 

distributions and is given as, 
 

 

 

    

where [ ] is the threshold and        
.
 

   
 

The accuracy of a diagnostic test can be explained using the Area under the Curve (AUC) of 

an ROC Curve.AUC describes the ability of the test to discriminate between diseased and no 

diseased populations. 

 

A natural measure of the performance of the classifier producing the curve is AUC. This will 

range from 0.5 for a random classifier to 1 for a perfect classifier. The AUC is defined as, 
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The closed form of AUC is as follows 
 

 
 

 
 

2.1 Bayesian Estimation of AUC under Constant Shape Bi-Weibull Distribution 

 

For analysing Failure time data Bayesian estimation approach has received a lot of attention. 

It makes use of once prior knowledge about the parameters and also takes into consideration 

the data available. If once prior knowledge about the parameter is available, it is suitable to 

make use of an informative prior but in a situation where one does not have any prior 

knowledge about the parameter and cannot obtain vital information from experts in this 

regard, then a non-informative prior will be a suitable alternative to use, Guure et al. [5]. 

 

Let            ......       be a random sample of size m from                 and                  be a     random 

sample of size n from          .The likelihood function of the selected sample is     given by 
 

 

         |         ∏       |          ∏      |          
 
 

where                    

 
  

    ∏       
 *

 
+ 
∏  

  
 
 *        

+
      

 
 

The log-likelihood function is 
 

  

                           [∑     

  

  ∑ ]        

  

∑     
 
 

∑            

    
 

The Bayes estimators of the parameters are considered with different loss functions which are 

given below: 

             ( ̂    )       ( ( ̂    ))    ( ̂    )         
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                       ( ̂    )   (
 ̂
) 

 ̂ 
       ( 

 
)         

and 
̂ ̂ 

                     ( ) ( ) 
 

a) Jeffreys Prior information 
Consider a likelihood function L(θ), with its Fisher Information 

 
. The 

 
       ( ) 

Fisher Information measures the sensitivity of an estimator. Jeffreys (1961) suggested that 
  

       [ ] be considered as a prior for the likelihood function L(θ). 
 

The Jeffreys prior is justified on the grounds of its invariance under parameterization 

according to Sinha [22]. Under the two-parameter Weibull distribution the non-informative 

(vague) prior according to Sinha and Sloan [23] is given as 
 

          [ ]  

 

Let the likelihood equation which is | be the same as (6). The joint posterior of the  
parameters σ and β is given by 

      |              |                    
 

The marginal distribution function is the double integral of equation (11). Therefore, the 

posterior probability density function of σ and β given the data (t1, t2, …, tn) is obtained by 

dividing the joint posterior density function over the marginal distribution function as 
 

       | 
|              

∬      |                  
 

b) Extension of Jeffreys Prior information 
We propose a Extension of Jeffreys Prior information such that, 

      

       [  ] 

This is a Extension of Jeffreys Prior information, when a = 1, we have the standard Jeffreys 

Prior information and undefined when a = 0. Since our knowledge on the parameters is 

limited as a result of which a Jeffreys Prior information approach is employed on both 

parameters, it is important that one ensures the prior does not significantly influence the final 

result. If our limited or lack of knowledge influences the results, one may end-up giving 

wrong interpretation which could affect whatever it is we seek to address. It is as a result of 

this that the Extension of Jeffreys Prior information is considered. 

We have, 
 

          [ ] 

 

The likelihood function from equation (6) is 
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   * + 

|             ∏       
 
 

According to Bayes theorem, the joint posterior distribution of the parameters σ and β is 

       |              |              
  
  

where     |         
 

 
∏ *

 
+

 
 

and the marginal distribution is ∬ 
 

 ∏ * +      

where k is the normalizing constant that makes a  proper  pdf.  The  posterior  density 
function is obtained by using equation (12). 

 

Bayesian Estimation approach has received a lot of attention in recent times for analyzing 

Failure Time data, which has mostly been proposed as an alternative to that of the traditional 

methods. 

 

Remark 2.1 

Here we consider two Asymmetric Loss Functions namely Linear Exponential (LINEX) Loss 

Function and General Entropy Loss Function. Also the Symmetric Loss Function namely 

Squared Error Loss Function considered in order to estimate AUC values. 

 

2.2.1 Linear Exponential Loss Function (LINEX) 
 

The LINEX Loss Function is under the assumption that the minimal loss occurs at  ̂      and is 

expressed as 

 

 ( ̂    )       ( ( ̂    ))    ( ̂    )       

 
where  ̂ is an estimation of θ and  ............. The sign and magnitude of the shape parameter ‗a‘ 

represents the direction and degree of symmetry, respectively. There is overestimation if a > 

0 and underestimation if a < 0 but when         , the LINEX Loss Function is approximately  

the Squared Error Loss Function. The posterior expectation of the LINEX Loss Function, 

according to [18], is 
 

   ( ̂    )      (  ̂)                ( ̂        )            

The Bayes Estimator of θ, represented by  ̂    under LINEX Loss Function, is the value of 

 ̂ which minimizes equation (13) and is given as 

 

 ̂ 

 

provided             exists and finite. The Bayes Estimator  ̂   of a function 
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                                       is given as 

 

 ̂                                         |   
 

∬    [     ]        

∬       
 

From (14), it can be observed that ratio of integrals which cannot be solved analytically and 

for that we employ Lindley‘s approximation procedure to estimate the parameters. Lindley 

considered an approximation for the ratio of integrals for evaluating the posterior expectation 

of an arbitrary function   ̂    as 
 

 

 [ | ]   
∫ [ ]   

 
 

∫ [ ]   
 

According to [22], Lindley‘s expansion can be approximated asymptotically by 

 ̂       
  

[  ]     
 

  
  
  

[          

]        
 

where L is the log-likelihood function in equation (7), 
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For Extension of Jeffreys Prior information 

                                               
 

 
 
 

 
 
 

 
 
 

For Jeffreys Prior information 
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Bayesian Estimation of AUC using LINEX Loss Function is given as 
 

 ̂     
  

  
     ̂ 

        ̂ 
 ̂    

    
 ̂    

 
 

2.2.2 General Entropy Loss Function 

 

Another useful Asymmetric Loss Function is the General Entropy (GE) Loss which is a 

generalization of the Entropy Loss and is given as 
 

 ( ̂    )   (
 ̂
) 

 ̂ 
       ( 

 
)        

 

The Bayes Estimator  ̂    of θ under the General Entropy Loss is 
 

̂  
   

      [ ] 
 

provided exists and finite. 

 

The Bayes Estimator for this Loss Function is 
 

 ̂       { [               ]| } 
 

∬    [                          ]                       

∬       
 

Applying the same Lindley approach here as in (15) with u100, u200, u010, u020 and u001, u002 are 

the first and second derivatives for and β, respectively, and are given as 

 

    [     ]       

 
    

    [       ]   

 
 

 
 
 
 
 

    [     ]       

 
    

    [       ]   

 
 

 
 

                                   



Journal of Management and Science ISSN: 2249-1260 | e-ISSN: 2250-1819 Vol.7. Vol.1 | Mar‟2017 

85 | P a g e 

 

 

    [ ]       
   
    [ ]  

   
 

 
 

 
 

                                   
 

Bayesian Estimation of AUC using the General Entropy Loss is given as 
 

 ̂     

 
2.2.3 Symmetric Loss Function 

  
  
     ̂ 

        ̂ 
 ̂    

    
 ̂    

 

The Squared Error Loss is given by 

 

 ( ̂    )   ( ̂    )
 
. 

This Loss Function is symmetric in nature, that is, it gives equal weightage to both over and 

under estimation. 

 

In real life, we encounter many situations where overestimation may be more serious than 

underestimation or vice versa. 

 

The Bayes Estimator  ̂    of a function                  of the unknown parameters under 
Square Error Loss Function (SELF) is the posterior mean, where 

 
∬ [ ]                       

 ̂      { [         ]| }    
 

∬       
 

Applying the same Lindley approach here as in (15) where u100, u200, u010, u020 and u001, 

u002 are the first and second derivatives for and β, respectively, and are given as 
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Bayesian Estimation of AUC using The Squared Error Loss is given as 
 

 ̂     
  

  
     ̂ 

         ̂ 
 ̂    

    
 ̂    

 

 

3. SIMULATION STUDY 

 

Simulation studies are conducted with different combinations of scale and shape parameters 

of both diseased and non-diseased populations. At every parameter combination and sample 

size, the AUC is obtained. The main purpose of conducting simulations is to show how the 

AUC of ROC curve possesses different values as the scale and shape parameters of the 

normal and abnormal distributions change. 

 

The AUC has been computed through different methods via Bayesian Estimation using 

Extension of Jeffreys‘ Prior Information and Jeffreys‘ Prior Information obtained from 

Lindley‘s approximation procedure with three Loss Functions. 

 

In our Simulation study, we chose a sample size of n= 25, 50, and 100 to represent small, 

medium, and large dataset. The assumed scale and shape parameters of both populations     

are . The values of Jeffreys‘ Extension are 

        and 1.4. The values for the Loss parameters (a, k) are a=k=±0.6 and ±1.6. 

 

In Table 1 we present the estimated values for AUC for Bayesian Estimation using extension 

of Jeffrey‘s prior information with the three loss functions. 

 

Table 1: Bayesian Estimated values for AUC using extension of Jeffrey‘s prior information 

 

(m, n)       β c  ̂    
 ̂     ̂     ̂     ̂     ̂     ̂     ̂      ̂    

a=k=0.6 a=k=-0.6 a=k=1.6 a=k=-1.6 

 

 
(25,25) 

1.5 

1.5 

1.5 

1.5 

0.5 

0.5 

0.5 

0.5 

0.8 

1.2 

0.8 

1.2 

0.4 

0.4 

1.4 

1.4 

0.7500 

0.7440 

0.7725 

0.7769 

0.3399 

0.3536 

0.3307 

0.3266 

0.3416 

0.3431 

0.3261 

0.3222 

0.6497 

0.6438 

0.6603 

0.6632 

0.6590 

0.6553 

0.6602 

0.6788 

0.1280 

0.1631 

0.1179 

0.1100 

0.1487 

0.1481 

0.1283 

0.1232 

0.8258 

0.8253 

0.8450 

0.8487 

0.8533 

0.8454 

0.8764 

0.8802 

 

 
(50,50) 

1.5 

1.5 

1.5 

1.5 

0.5 

0.5 

0.5 

0.5 

0.8 

1.2 

0.8 

1.2 

0.4 

0.4 

1.4 

1.4 

0.7534 

0.7464 

0.7648 

0.7600 

0.3462 

0.3518 

0.3364 

0.3465 

0.3400 

0.3426 

0.3322 

0.3328 

0.6486 

0.6451 

0.6567 

0.6510 

0.6611 

0.6566 

0.6694 

0.6666 

0.1476 

0.1594 

0.1300 

0.1523 

0.1472 

0.1487 

0.1368 

0.1348 

0.8303 

0.8271 

0.8418 

0.8377 

0.8573 

0.8486 

0.8693 

0.8629 

 

 
(100,100) 

1.5 

1.5 

1.5 

1.5 

0.5 

0.5 

0.5 

0.5 

0.8 

1.2 

0.8 

1.2 

0.4 

0.4 

1.4 

1.4 

0.7504 

0.7484 

0.7545 

0.7563 

0.3519 

0.3528 

0.3501 

0.3486 

0.3409 

0.3416 

0.3379 

0.3363 

0.6462 

0.6455 

0.6483 

0.6494 

0.6593 

0.6580 

0.6622 

0.6636 

0.1615 

0.1632 

0.1590 

0.1561 

0.1473 

0.1478 

0.1429 

0.1404 

0.8305 

0.8296 

0.8343 

0.8357 

0.8535 

0.8510 

0.8578 

0.8595 
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From Table 1 it is observed that Bayes estimator under LINEX and General Entropy Loss 

functions tend to underestimate the AUC values when loss parameters value are (0.6,1.6). 

 

Bayes estimation with General Entropy loss function provides the highest AUC values when 

the loss parameter is -1.6, according to the extension of Jeffreys prior value is 0.4 or 1.4. So 

that the Bayes estimators of AUC under General Entropy loss function is best estimation 

method for Constant Shape Bi-Weibull Distribution. 

 

Table 2: Bayesian Estimated values for AUC using Jeffrey‘s prior information 

 

(m, n)       β  ̂    
 ̂     ̂     ̂     ̂     ̂     ̂     ̂     ̂    

a=k=0.6 a=k=-0.6 a=k=1.6 a=k=-1.6 

 1. 0. 0. 0.75 0.33 0.34 0.65 0.66 0.12 0.14 0.82 0.85 
 5 5 8 21 84 00 11 05 55 64 82 54 
 1. 0. 1. 0.74 0.35 0.34 0.64 0.65 0.16 0.14 0.82 0.84 

(25,25) 
5 

1. 

5 

0. 

2 

0. 

52 

0.75 

30 

0.34 

21 

0.33 

44 

0.65 

62 

0.66 

19 

0.13 

68 

0.14 

64 

0.82 

67 

0.85 
 5 5 8 43 11 94 02 18 38 65 86 82 
 1. 0. 1. 0.75 0.33 0.33 0.65 0.66 0.12 0.14 0.82 0.85 
 5 5 2 31 97 97 07 11 93 62 83 66 

 1. 0. 0. 0.75 0.34 0.33 0.64 0.66 0.14 0.14 0.83 0.85 
 5 5 8 41 56 94 92 17 66 64 13 81 
 1. 0. 1. 0.74 0.35 0.34 0.64 0.65 0.15 0.14 0.82 0.84 

(50,50) 
5 

1. 

5 

0. 

2 

0. 

73 

0.75 

12 

0.34 

19 

0.33 

57 

0.65 

73 

0.66 

85 

0.13 

77 

0.14 

81 

0.83 

96 

0.86 
 5 5 8 67 21 83 13 34 90 55 32 11 
 1. 0. 1. 0.74 0.35 0.34 0.64 0.65 0.16 0.14 0.82 0.84 
 5 5 2 75 23 17 53 75 13 73 84 97 

 1. 0. 0. 0.75 0.35 0.34 0.64 0.65 0.16 0.14 0.83 0.85 
 5 5 8 07 16 06 65 95 11 70 10 39 
 1. 0. 1. 0.74 0.35 0.34 0.64 0.65 0.16 0.14 0.83 0.85 

(100,1 5 5 2 89 25 13 58 83 27 73 01 15 

00) 1. 0. 0. 0.75 0.35 0.34 0.64 0.65 0.16 0.14 0.83 0.85 
 5 5 8 05 22 07 62 93 24 70 09 36 
 1. 0. 1. 0.74 0.35 0.34 0.64 0.65 0.16 0.14 0.83 0.85 

 5 5 2 98 18 09 63 90 12 70 06 27 
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From Table 2 it is observed that Bayes estimator under LINEX and General Entropy Loss 

functions tend to underestimate the AUC values when loss parameters value are (0.6,1.6). 

 

Bayes estimation with General Entropy loss function provides the highest AUC values 

when the loss parameter is -1.6. So that the Bayes estimators of AUC under General 

Entropy loss function is best estimation method for Constant Shape Bi-Weibull 

Distribution. 

 

4. ILLUSTRATION 

 

The real data set namely Coronary Heart Disease [CHDAGE] Data extracted from 

[27].Data consists of 100 Observations, 3 variables. For this data we have to find estimate 

AUC values. This data consists of patients who are Diseased and who are Non-diseased. 

We have to know the patients with Diseased and patients without Diseased and age is 

most influential variable for diagnose. Table 2 depicts the Estimated AUC values using 

CHDAGE Data. 

 

Table 3: Estimated AUC values using CHDAGE Data 

 

 

(m, n)=(43,57) 

  =1.5, =0.5, c=0.4   =1.5, =0.5, c=1.4 

β=0.8 β=1.2 β=0.8 β=1.2 

MLE 0.5541 0.5792 0.5541 0.5792 

EBS 0.7500 0.7500 0.7502 0.7500 

JBS 0.7501 0.7500 0.7501 0.7500 

EBL(a=k=0.6) 0.3542 0.3543 0.3540 0.3542 

EBL(a=k=-0.6) 0.6456 0.6456 0.6457 0.6456 

EBL(a=k=1.6) 0.1675 0.1679 0.1673 0.1678 

EBL(a=k=-1.6) 0.8318 0.8319 0.8320 0.8320 

EBG(a=k=0.6) 0.3409 0.3409 0.3408 0.3409 

EBG(a=k=-0.6) 0.6590 0.6590 0.6592 0.6591 

EBG(a=k=1.6) 0.1471 0.1470 0.1469 0.1470 

EBG(a=k=-1.6) 0.8530 0.8529 0.8532 0.8529 

JBL(a=k=0.6) 0.3542 0.3543 0.3542 0.3543 

JBL(a=k=-0.6) 0.6456 0.6456 0.6456 0.6456 

JBL(a=k=1.6) 0.1675 0.1678 0.1675 0.1678 

JBL(a=k=-1.6) 0.8318 0.8319 0.8318 0.8319 

JBG(a=k=0.6) 0.3409 0.3409 0.3409 0.3409 

JBG(a=k=-0.6) 0.6590 0.6590 0.6590 0.6590 

JBG(a=k=1.6) 0.1471 0.1470 0.1471 0.1470 

JBG(a=k=-1.6) 0.8530 0.8529 0.8530 0.8529 

 

From Table 3, we observe that, Bayes estimation with General Entropy loss function 

provides the highest AUC values when the loss parameter value is -1.6, according to the 

extension of Jeffreys prior value is 0.4 or 1.4. 

 

So that the Bayes estimators of AUC under General Entropy loss function is best 

estimation method for Constant Shape Bi-Weibull Distribution using CHDAGE Data. 
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To demonstrate the proposed methodology with the help of graphical visualization, 

Figures 1 is drawn for comparing the Estimated AUC values under Constant Shape Bi- 

Weibull distribution using CHDAGE Data. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Effect on AUC values comparing different Estimation methods 

 

From Figure 1, it is visualized that Bayes estimation with General Entropy loss function 

provides the highest AUC values when the loss parameter is -1.6. 

 

5. CONCLUSION 

 

The main objective for this paper is Bayesian estimation of AUC for the Constant Shape 

Bi-Weibull distribution, under three Loss functions, namely, the Linear Exponential 

(LINEX) Loss, General Entropy Loss, and Square Error Loss functions. Bayes estimators 

were obtained using Lindley approximation. 

 

A Simulation study was conducted to examine and compare the performance of the 

estimators for different sample sizes with different values for the extension of Jeffreys‘ 

prior and Jeffreys‘ prior with the loss functions. 

 

We also observe that Bayes estimation with General Entropy loss function provides the 

highest AUC values when the loss parameter is -1.6, according to the extension of 

Jeffreys prior value is 0.4 or 1.4. So that the Bayes estimators of AUC under General 

Entropy loss function is best estimation method for Constant Shape Bi-Weibull 

Distribution. 

Estimated AUC values using CHDAGE Data 
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